\(\Leftrightarrow3^{30}\cdot8^{30}:144^{n+1}=8^{10}\\ \Leftrightarrow144^{n+1}=\dfrac{3^{30}\cdot8^{30}}{8^{10}}=3^{30}\cdot8^{20}=3^{30}\cdot2^{60}\\ \Leftrightarrow\left(2^4\cdot3^2\right)^{n+1}=3^{30}\cdot2^{60}\\ \Leftrightarrow2^{4n+4}\cdot3^{2n+2}=2^{60}\cdot3^{20}\\ \Leftrightarrow\left\{{}\begin{matrix}4n+4=60\\2n+2=20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n+1=15\\n+1=10\end{matrix}\right.\Leftrightarrow n\in\varnothing\)
Cách này nhìn hơi kì ;-;