1 + 2 + 3 + .... + n = aaa
=> n(n + 1) : 2 = a . 111
=> n(n + 1) = 222.a
Vì \(0< a\le9\)
Nếu a = 1 => n(n + 1) = 222 => n \(\in\varnothing\)
Nếu a = 2 => n(n + 1) = 444 => n \(\in\varnothing\)
Nếu a = 3 => n(n + 1) = 666 => n \(\in\varnothing\)
Nếu a = 4 => n(n + 1) = 888 => n \(\in\varnothing\)
Nếu a = 5 => n(n + 1) = 1110 => n \(\in\varnothing\)
Nếu a = 6 => n(n + 1) = 1332 => n(n + 1) = 36.37 => n = 36 (tm)
Nếu a = 7 => n(n + 1) = 1554 => n \(\in\varnothing\)
Nếu a = 8 => n(n + 1) = 1776 => n \(\in\varnothing\)
Nếu a = 9 => n(n + 1) = 1998 => n \(\in\varnothing\)
Vậy n = 36 ; a = 6
We have \(1+2+3+...+n=\overline{aaa}\)
\(\Rightarrow\frac{n\left(n+1\right)}{2}=\overline{aaa}\)
\(\Rightarrow n\left(n+1\right)=2.3.37a\)
\(\Rightarrow n\left(n+1\right)⋮37\)
But 37 is a number element so \(\orbr{\begin{cases}n⋮37\\n+1⋮37\end{cases}}\)
again yes \(n< 74\)\(\Rightarrow\orbr{\begin{cases}n=37\\n+1=37\end{cases}}\)
+) If n = 37
\(\Rightarrow a=6\)
+) If n + 1 = 37 so n = 36
instead we see no integer value satisfying
So n = 36 and a = 6