Ta có : A=1+5+52+...+52014
5A=5+52+53+...+52015
5A-A=(5+52+53+...+52015)-(1+5+52+...+52014)
\(\Rightarrow\)4A=52015-1
\(\Rightarrow\)4A+1=52015-1+1=52015
\(\Rightarrow\)5n=52015
\(\Rightarrow\)n=2015
Vậy n=2015.
\(Ta \) \(có : \)
\(A = 1 + 5 + 5 ^ 2 + ... + 5\)\(2014\)
\(5A = 5 + 5^ 2 + 5^ 3 + ... + 5\)\(2015\)
\(5A - A = ( 5 + 5^ 2 + 5^ 3+ ...+ 5\)\(2015\)\() - ( 1+ 5 + 5^2 + ...+ 5\)\(2014\)\()\)
\(4A = 5\)\(2015\) \(- 1 \)
\(\Leftrightarrow\)\(4A + 1 = 5\)\(2015\)
\(Mà \) \(theo \) \(đề \) \(ta \) \(có :\)\(4A + 1 = 5^n\)
\(\Rightarrow\)\(5^n = 5\)\(2015\)
\(\Rightarrow\)\(n = 2015\)
\(Vậy : n = 2015\)