ĐặtA = \(2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2=2^{2n-1}-2\)
\(\Rightarrow2^{2n-1}=2^{101}\Rightarrow2n-1=101\)
\(\Rightarrow n=51\)
Đặt \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2.\left(2+2^2+...+2^{100}\right)\)
\(2A=2^2+2^3+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
Ta có : \(2^{2n-1}-2=2^{101}-2\)
\(\Rightarrow2^{2n-1}=2^{101}\)
\(\Rightarrow2n-1=101\)
\(\Rightarrow n=51\)