Gọi số cần tìm là : a0cd . Khi đó số mới là : acd
Ta có : a0cd = acd x 9
<=> 1000a + 10c + d = 900a + 90c + 9d
=> 1000a - 900a + 10c - 90c + d - 9d = 0
<=> 100a - 80c - 8d = 0
=> 4(25a - 20c - 2d) = 0
=> 25a - 20c - 2d = 0
Mk chỉ giả đc đến đây thôi
abc là số phải tìm
___
abc = 100a + 10b + c
Khi xóa số hàng trăm ta được số
__
bc = 10b + c
Theo giả thiết thì
100a + 10b + c = 5(10b + c)
100a + 10b + c chia hết cho 5 nên chữ số tận cùng phải bằng 0 hoặc 5
Ta xét 2 trường hợp:
(1) Nếu c = 0 thì 100a + 10b = 50b hay 100a = 40b
Suy ra b/a = 100/40 = 5/2
Vậy a = 2, b = 5, c = 0
Số phải tìm là 250
(2) Nếu c = 5 thì 100a + 10b + 5 = 50b + 25 hay 100a - 20 = 40b
Suy ra (5a - 1) = 2b
Vậy 5a - 1 phải là số chẵn, 5a là một số lẻ, và a là một số lẻ
Vì b ≤ 9 nên 5a - 1 ≤ 18. a ≤ 19/5, a < 4
a là một số lẻ nhỏ hơn 4. a có thể là 1 hay 3
(a) nếu a = 1 thì b = (5a - 1)/2 = 2, số phải tìm là 125
(b) nếu a = 3 thì b = (5a - 1)/2 = 7, số phải tìm là 375
Tóm lại, có 3 số đáp ứng yêu cầu của bài toán, đó là:
250, 125, 375