Lời giải:
Theo bài ra:
$a-2\vdots 3; a-3\vdots 7$
$\Rightarrow a-2+3.2\vdots 3; a-3+7\vdots 7$
$\Rightarrow a+4\vdots 3$ và $a+4\vdots 7$
$\Rightarrow a+4=BC(3,7)\Rightarrow a+4\vdots BCNN(3,7)$
$\Rightarrow a+4\vdots 21$.
Đặt $a=21k-4$ với $k$ tự nhiên.
Vì $a$ chia $11$ dư $9$ nên:
$a-9\vdots 11\Rightarrow 21k-4-9\vdots 11$
$\Rightarrow 21k-13\vdots 11\Rightarrow 21k-13+11.5\vdots 11$
$\Rightarrow 21k+42\vdots 11$
$\Rightarrow 21(k+2)\vdots 11\Rightarrow k+2\vdots 11$
$\Rightarrow k=11m-2$ với $m$ tự nhiên.
Vậy $a=21k-4=21(11m-2)-4=231m-46$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ là số tự nhiên nhỏ nhất sao cho $231m-46\geq 0$
$\Rightarrow m\geq 1$.
$\Rightarrow m$ nhỏ nhất bằng 1.
$\Rightarrow a$ nhỏ nhất bằng: $231.1-46=185$