\(x^3-x^2+x-1=x^2\left(x-1\right)+\left(x-1\right)=\left(x^2+1\right)\left(x-1\right)=p\)
Vì p nguyên tố nên có 2 trường hợp:\(\orbr{\begin{cases}x-1=1\\x^2+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}P=5\\P=-1\left(sai\right)\end{cases}}}\)
Vậy x=2 .BẤM ĐÚNG CHO TUI NHÉ
có \(x^3-x^2+x-1=p\)\(\Leftrightarrow x^2\left(x-1\right)+\left(x-1\right)=p\)\(\Leftrightarrow\left(x^2+1\right)\left(x-1\right)=p\)
mà x\(\in\)Z suy ra \(x^2+1\)và x-1 là ước của p mà \(x^2\)+1 -(x-1)=\(x^2-x+2\)= \(x^2-x+\frac{1}{4}\)+\(\frac{3}{4}\)=\(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)>0 suy ra \(x^2\)+1>x-1 và x-1 dương mặt khác p là snt nên p chỉ có 2 ước dương là 1 và chính nó suy ra x-1= 1 và\(x^2\)+1=p suy ra x=2 thỏa mãn đề bài khi đó p= \(2^2\)+1=5