Lời giải:
Nếu $p$ chia hết cho $3$ thì $p=3$. Khi đó $p+10, p+14$ cũng là snt (thỏa mãn)
Nếu $p$ chia $3$ dư $1$ thì đặt $p=3k+1$ với $k$ tự nhiên.
Khi đó $p+14=3k+15=3(k+5)\vdots 3$. Mà $p+14>3$ nên không thể là snt (trái giả thiết - loại)
Nếu $p$ chia $3$ dư $2$ thì đặt $p=3k+2$ với $k$ tự nhiên.
Khi đó $p+10=3k+12=3(k+4)\vdots 3$. Mà $p+10>3$ nên không thể là snt (trái giả thiết - loại)
Vậy $p=3$ là đáp án duy nhất thỏa mãn.