Cho p , q nguyên tố lớn hơn 3 p > q
Chứng minh p2-q2 chia hết cho 24
p2 là p mũ 2, q2 là q mũ 2 !, giúp tớ nhé
Tìm 3 số nguyên tố lien tiep p , q , r sao cho
p2 + q2 + r2 đều là nguyên tố
Bài 1:
a, cho hai số a; b là hai số tự nhiên liên tiếp ( giữa chúng không còn số nguyên tố nào khác ) ; a < b . Tìm a;b để a2 + b2 là số nguyên tố
b, Cho p và q là số nguyên tố ;p<3. Chứng minh p2 + q2 chia hết cho 24 .
Tìm các số nguyên tố p;q biết :
p2 - 2q2 = 1
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố
1) Tìm số tự nhiên nhỏ nhất chia cho 5 dư 1, chia cho 7 dư 3.
2) Tìm số nguyên tố p sao cho p2 +4 và p2– 4 đều là số nguyên tố.
a) Tìm x,y nguyên biết: 2x(3y-2)+(3y-2)=-55
b) tìm các số nguyên tố x,ysao cho x2+117=y2
c)chúng tỏ rằng nêu p là số nguyên tố lớn hơn 3 thì p2-1 cgia hết cho 3
Tìm 4 số nguyên tố liên tiếp và tăng dần p1 < p2 < p3 < p4 sao cho số q = p1 + p2 + p3 + p4 cũng là một số nguyên tố.
Bài 1: Tìm x ∈ N biết
2
3 = 412 : 16
2 + 7 chia hết cho (2x2 + 1)
Bài 2: Tìm số nguyên tố p và q sao cho
a) p2 - 2q2 = 17
q + qp là 1 số nguyên tố