ta có A = \(\frac{12n-1}{4n+3}\)= \(\frac{12n+9-10}{4n+3}\)=\(\frac{3\left(4n+3\right)-10}{4n+3}\)= 3 - \(\frac{10}{4n+3}\)
để A đạt giá trị nhỏ nhất thì \(\frac{10}{4n+3}\) đạt giá trị lớn nhất
+) 4n + 3 > 0 => \(\frac{10}{4n+3}\) > 0 => 3 - \(\frac{10}{4n+3}\) < 3
+) 4n + 3 < 0 =>\(\frac{10}{4n+3}\) < 0 => 3 - \(\frac{10}{4n+3}\) > 3
để A đạt giá trị nhỏ nhất thì \(\frac{10}{4n+3}\) đạt giá trị lớn nhất
=> 4n + 3 là số nguyên dương lớn nhất
=> 4n + 3 =
=> 4n = -4
=> n = -1
khi đó A