Ta có :
\(n^5+1⋮n^3+1\)
\(\Leftrightarrow n^2\left(n^3+1\right)-\left(n^2-1\right)⋮n^3+1\)
\(\Leftrightarrow\left(n+1\right)\left(n-1\right)⋮\left(n+1\right)\left(n^2-n+1\right)\)
\(\Leftrightarrow n-1⋮n^2-n+1\)vì \(n+1\ne0\)
+) Trường hợp 1 :
Nếu n=1 thì giá trị cần tìm là \(0⋮1\)
+) Trường hợp 2:
Nếu n < 1 thì ta có :
\(n-1< n\left(n-1\right)+1=n^2-n+1\)
\(\Rightarrow n\)không chia hết cho \(n^2-n+1\) ( loại)
Vậy giá trị cần tìm để chia hết là 1 .