Bài 1:
Với $n$ nguyên, để $\frac{4n+3}{2n-3}$ nguyên thì:
$4n+3\vdots 2n-3$
$\Rightarrow 2(2n-3)+9\vdots 2n-3$
$\Rightarrow 9\vdots 2n-3$
$\Rightarrow 2n-3$ là ước của $9$
$\Rightarrow 2n-3\in \left\{\pm 1; \pm 3; \pm 9\right\}$
$\Rightarrow n\in \left\{2; 1; 3; 0; 6; -3\right\}$
Bài 2:
Với $n$ nguyên, để $\frac{3n+2}{2n-1}$ nguyên thì:
$3n+2\vdots 2n-1$
$\Rightarrow 2(3n+2)\vdots 2n-1$
$\Rightarrow 6n+4\vdots 2n-1$
$\Rightarrow 3(2n-1)+7\vdots 2n-1$
$\Rightarrow 7\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{\pm 1; \pm 7\right\}$
$\Rightarrow n\in \left\{1; 0; 4; -3\right\}$