`{x+1}/2023 +{x+2}/2022={x+3}/2021+{x+4}/2020`
`{x+1}/2023+{x+2}/2022-{x+3}/2021-{x+4}/2020=0`
`({x+1}/2023+1)+({x+2}/2022+1)-({x+3}/2021+1)-({x+4}/2020+1)=0`
`{x+2024}/2023+{x+2024}/2022-{x+2024}/2021-{x+2024}/2020=0`
`x+2024(1/2023+1/2022-1/2021-1/2020)=0`
`x+2024=0` (vì `1/2023+1/2022-1/2021-1/2020 ne 0`)
`x=-2024`
Vậy `x=-2024`