\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
=> \(\frac{1}{x-1}-\frac{1}{2}+\frac{4}{5}=\frac{5}{-2}.\frac{1}{x-1}\)
=> \(\frac{1}{x-1}+\frac{3}{10}=\frac{-5}{2}.\frac{1}{x-1}\)
=> \(-\frac{5}{2}.\frac{1}{x-1}-\frac{1}{x-1}=\frac{3}{10}\)
=> \(\frac{1}{x-1}.\left(-\frac{7}{2}\right)=\frac{3}{10}\)
=> \(\frac{1}{x-1}=\frac{-3}{35}\)
=> -3(x - 1) = 35
=> -3x + 3 = 35
=> -3x = 32
=> x = -32/3
\(\frac{1}{x-1}-\frac{2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)ĐK \(x\ne1\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{2}{3}\left(-\frac{9}{20}\right)=\frac{5}{2-2x}\)
\(\Leftrightarrow\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2-2x}\)
\(\Leftrightarrow\frac{10\left(2-2x\right)}{10\left(x-1\right)\left(2-2x\right)}+\frac{3\left(x-1\right)\left(2-2x\right)}{10\left(x-1\right)\left(2-2x\right)}=\frac{50\left(x-1\right)}{10\left(2-2x\right)\left(x-1\right)}\)
\(\Leftrightarrow20-20x+12x-6x^2-6=50x-50\)
\(\Leftrightarrow14-8x-6x^2=50x-50\)
\(\Leftrightarrow64-58x-6x^2=0\)
\(\Leftrightarrow-2\left(3x+32\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{32}{3}\left(tm\right)\\x=1\left(ktm\right)\end{cases}}\)