Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : 2x - 2y + z + 3 = 0 và mặt cầu S : x - 1 2 + ( y + 3 ) 2 + z 2 = 9 và đường thẳng d : x - 2 = y + 2 1 = z + 1 2 . Cho các phát biểu sau đây:
I. Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.
II. Mặt phẳng (P) tiếp xúc với mặt cầu (S)
III. Mặt phẳng (P) và mặt cầu (S) không có điểm chung
IV. Đường thẳng d cắt mặt phẳng (PA) tại 1 điểm
Số phát biểu đúng là:
A. 4
B. 1
C. 2
D. 3
Cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 và mặt phẳng ( α ): 2x+y-2z+m=0. Các giá trị của m để ( α ) và (S) không có điểm chung là:
A. m ≤ - 9 hoặc m ≥ 21
B. m < - 9 hoặc m > 21
C. - 9 ≤ m ≤ 21
D. - 9 < m < 21
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;1;2), M(3;0;0) và mặt phẳng (P):x+y+z-3=0. Đường thẳng ∆ đi qua điểm M, nằm trong mặt phẳng (P) sao cho khoảng cách từ điểm A đến đường thẳng ∆ là nhỏ nhất. Gọi u → = a , b , c là vectơ chỉ phương của ∆ với a, b, c là các số nguyên có ước chung lớn nhất bằng 1. Tính giá trị T=a+b+c.
A. T = -1
B. T = 1.
C. T = 0.
D. T = 2.
Trong không gian Oxyz, cho mặt cầu: S : x − 2 2 + y + 1 2 + z + 2 2 = 4 và mặt phẳng P : 4 − 3 y − = 0. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P)và mặt cầu (S) có đúng 1 điểm chung.
A. m = 1
B. m = - 1 hoặc m = − 21
C. m = 1 hoặc m = 21
D. m = − 9 hoặc m = 31
Cho mặt cầu S : x + 1 2 + y - 2 2 + z - 3 2 = 25 và mặt phẳng α : 2 x + y - 2 z + m = 0 . Các giá trị của m để α và (S) không có điểm chung là:
A. m ≤ - 9 h o ặ c m ≥ 21
B. m < - 9 h o ặ c m > 21
C. - 9 ≤ m ≤ 21
D. - 9 < m < 21
Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Cho mặt phẳng ( α ) : 3 x + 5 y - z - 2 = 0 và đường thẳng d : x = 12 + 4 t y = 9 + 3 t z = 1 + t . Gọi M là tọa độ giao điểm của đường thẳng d và mặt phẳng (α). Viết phương trình mặt phẳng (P) chứa điểm M và vuông góc với đường thẳng d
A. 4 x + 3 y + z + 2 = 0
B. 4 x - 3 y + z + 2 = 0
C. 4 x - 3 y - z + 2 = 0
D. 4 x + 3 y + z = 0
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong không gian với hệ toạ độ Oxyz, cho điểm A - 3 ; - 1 ; 3 và đường thẳng d : x - 1 3 = y - 1 2 = z - 5 2 mặt phẳng ( P ) : x + 2 y - z + 5 = 0 Đường thẳng ∆ qua A và cắt d tại điểm B a ; b ; c và tạo với mặt phẳng (P) góc 30 0 . Tính T = a + b + c
A. T = 14
B. T = 0
C. T = 21
D. T = 7