Lời giải:
Vì viết các chữ số theo thứ tự ngược lại thì giá trị không đổi nên số cần tìm có dạng $\overline{abba}$
ĐK: $a,b$ là các số tự nhiên; $a,b\leq 9; a\neq 0$
Theo bài ra ta có:
$a+b+b+a=20$
$2\times (a+b)=20$
$a+b=10(*)$
$a\times b\times b\times a=441$
$(a\times b)\times (a\times b)=441=21\times 21$
$\Rightarrow a\times b=21(**)$
Từ $(*); (**)$ ta suy ra $a=3; b=7$ hoặc $a=7; b=3$
Vậy số cần tìm là $3773$ và $7337$