Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Tìm min
\(A=\frac{x^{20}}{y^{11}}+\frac{y^{20}}{z^{11}}+\frac{z^{20}}{x^{11}}\)
Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho \(\frac{x+y\sqrt{2015}}{y+x\sqrt{2015}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
có bao nhiêu bộ 3 số x;y;z thỏa mãn x+y+z=20
1) cho x;y;z dương thỏa mãn x+y+z=2 .tìm min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
2) cho x;y;z là các số dương sao cho \(x+y+z\ge12\)
tìm min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Cho các số dương x;y;z thỏa mãn x +2y +3z 》 20
Tìm GTNN của biểu thức
A= x+y+z+3/z+9/2y+4/z
tìm 3 số dương x, y, z sao cho x^2+y^2+z^2+2xy+2x(z-1)+2y(z+1)là số chính phương
Tìm các số dương x, y, z sao cho \(x+y+z=3\)
Tìm GTNN của biểu thức M = \(\frac{x}{3-x}+\frac{y}{3-y}+\frac{z}{3-z}\)
Cho x,y,z la các số dương sao cho x+y+z\(\ge\)12
tìm Min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Tìm 2 bố số nguyên dương a>=b>=c và x>=y>=z sao cho tổng 3 số của bộ này bằng tích 3 số của bộ kia