\(\frac{-n+2}{n+1}=\frac{-n-1+3}{n+1}=\frac{-\left(n+1\right)+3}{n+1}=\frac{-\left(n+1\right)}{n+1}+\frac{3}{n+1}=-1+\frac{3}{n+1}\)
Để \(-1+\frac{3}{n+1}\) là số nguyên <=> \(\frac{3}{n+1}\) là số nguyên
=> n + 1 ∈ Ư ( 3 ) = { ± 1 ; ± 3 }
Ta có : n + 1 = 1 <=> n = 1 - 1 => n = 0 ( TM )
n + 1 = - 1 <=> n = - 1 - 1 => n = - 2 ( TM )
n + 1 = 3 <=> n = 3 - 1 => n = 2 ( TM )
n + 1 = - 3 <=> n = - 3 - 1 => n = - 4 ( TM )
Vậy n ∈ { ± 2 ; 0 ; - 4 }