Bình phương lên ta được:
\(x+\sqrt{x+\sqrt{x}}=y^2\Rightarrow\sqrt{x+\sqrt{x}}=y^2-x=k\left(k\in N\right)\)
Lại bình phương tiếp ta được:
\(x+\sqrt{x}=k^2\Rightarrow\sqrt{x}\left(\sqrt{x}+1\right)=k^2\left(1\right)\)
Mà \(k\) là STN nên \(\sqrt{x}\) là số tự nhiên. Do đó, từ \(\left(1\right)\) suy ra \(k^2\) là SCP và là tích \(2\) STN liên tiếp nên số nhỏ bằng \(0\), tức là \(\sqrt{x}=0\Rightarrow x=0\Rightarrow y=0\)
Vậy nghiệm của phương trình là \(\left(x,y\right)=\left(0;0\right)\)