Ta có: \(x\left(x+2y\right)^3-y\left(y+2x\right)^3=27\)
\(\Leftrightarrow x\left(x^3+6x^2y+12xy^2+8y^3\right)-y\left(y^3+6xy^2+12x^2y+8x^3\right)=27\)
\(\Leftrightarrow x^4+6x^3y+12x^2y^2+8xy^3-y^4-6xy^3-12x^2y^2-8x^3y=27\)
\(\Leftrightarrow\left(x^4-y^4\right)-2x^3y+2xy^3=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2+y^2\right)-2xy\left(x^2-y^2\right)=27\)
\(\Leftrightarrow\left(x^2-y^2\right)\left(x^2-2xy+y^2\right)=27\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)^3=27\)
Vì x , y > 0 => \(x+y>0\Rightarrow\left(x-y\right)^3>0\Rightarrow x>y\)
Khi đó: \(\left(x-y\right)^3\in\left\{1;8;27\right\}\Rightarrow x-y\in\left\{1;2;3\right\}\)
Nếu \(\left(x-y\right)^3=1\Rightarrow\hept{\begin{cases}x-y=1\\x+y=27\end{cases}}\Rightarrow\hept{\begin{cases}x=14\\y=13\end{cases}}\)
Nếu \(\left(x-y\right)^3=8\Rightarrow\hept{\begin{cases}x-y=2\\x+y=\frac{27}{8}\end{cases}\left(ktm\right)}\)
Nếu \(\left(x-y\right)^3=27\Rightarrow\hept{\begin{cases}x-y=3\\x+y=1\end{cases}}\left(ktm\right)\)
Vậy x = 14 , y = 13