Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trịnh Quỳnh Nhi

Tìm nghiệm nguyên của phương trình sau 

\(x^2-4xy+5y^2-16=0\)

Dương Lam Hàng
4 tháng 2 2018 lúc 20:44

Ta có: \(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)

Vì \(x;y\in Z\Rightarrow\left(x-2y\right)^2\in Z;y^2\in Z\)  

    Và \(\left(x-2y\right)^2\ge0,y^2\ge0\)

\(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\)

Ta có các tập nghiệm: \(\left(x;y\right)=\left(8;4\right),\left(-8;-4\right),\left(4;0\right),\left(-4;0\right)\) thì thỏa mãn phương trình

Đinh Đức Hùng
4 tháng 2 2018 lúc 20:41

PT \(\Leftrightarrow x^2+\left(-4y\right).x+\left(5y^2-16\right)=0\)

Để PT trên có nghiệm \(\Leftrightarrow\Delta=\left(-4y\right)^2-4\left(5y^2-16\right)\ge0\)

\(\Leftrightarrow16y^2-20y^2+64\ge0\Leftrightarrow-4y^2+64\ge0\Leftrightarrow-4y^2\ge-64\)

\(\Leftrightarrow y^2\le16\Rightarrow-4\le y\le4\)

Đến đây xét các giá trị của y là tìm ra x

๖Fly༉Donutღღ
4 tháng 2 2018 lúc 20:49

\(x^2-4xy+5y^2-16=0\)

\(\Leftrightarrow\)\(\left(x^2-4xy+4y^2\right)+y^2=16\Leftrightarrow\left(x-2y\right)^2+y^2=16\)

Do \(x,y\in Z\Rightarrow\left(x-2y\right)^2\in Z,y^2\in Z,\left(x-2y\right)^2\ge0,y^2\ge0\)

\(\Rightarrow\)\(\orbr{\begin{cases}\left(x-2y\right)^2=0\\y^2=16\end{cases}}\)hoặc  \(\orbr{\begin{cases}\left(x-2y\right)^2=16\\y^2=0\end{cases}}\)

Đến đây tự xét các TH ta có cặp nghiệm :

( x , y ) = ( 8 ; 4 ) ; ( -8 ; -4 ) ; ( -4 ; 0 ) Thỏa mãn PT 

<div class="q-block text-overflow" style="height: 349px; display: block; overflow: hidden; word-break: break-word; overflow-wrap: break-word;">

<p>Ta có:&nbsp;<span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="36"><span class="textarea"><textarea></textarea></span><var mathquill-command-id="37">x</var><sup class="non-leaf" mathquill-command-id="39" mathquill-block-id="41"><span mathquill-command-id="40">2</span></sup><span mathquill-command-id="43" class="binary-operator">−</span><span mathquill-command-id="45">4</span><var mathquill-command-id="47">x</var><var mathquill-command-id="49">y</var><span mathquill-command-id="51" class="binary-operator">+</span><span mathquill-command-id="53">5</span><var mathquill-command-id="55">y</var><sup class="non-leaf" mathquill-command-id="57" mathquill-block-id="59"><span mathquill-command-id="58">2</span></sup><span mathquill-command-id="61" class="binary-operator">−</span><span mathquill-command-id="63">1</span><span mathquill-command-id="65">6</span><span class="binary-operator" mathquill-command-id="67">=</span><span mathquill-command-id="69">0</span></span></p><p><span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="71"><span class="textarea"><textarea></textarea></span><span mathquill-command-id="72">⇔</span><span class="non-leaf" mathquill-command-id="75"><span class="scaled paren" style="transform: scale(1.06667, 1.4);">(</span><span class="non-leaf" mathquill-block-id="77"><var mathquill-command-id="76">x</var><sup class="non-leaf" mathquill-command-id="78" mathquill-block-id="80"><span mathquill-command-id="79">2</span></sup><span mathquill-command-id="82" class="binary-operator">−</span><span mathquill-command-id="84">4</span><var mathquill-command-id="86">x</var><var mathquill-command-id="88">y</var><span mathquill-command-id="90" class="binary-operator">+</span><span mathquill-command-id="92">4</span><var mathquill-command-id="94">y</var><sup class="non-leaf" mathquill-command-id="96" mathquill-block-id="98"><span mathquill-command-id="97">2</span></sup></span><span class="scaled paren" style="transform: scale(1.06667, 1.4);">)</span></span><span mathquill-command-id="102" class="binary-operator">+</span><var mathquill-command-id="104">y</var><sup class="non-leaf" mathquill-command-id="106" mathquill-block-id="108"><span mathquill-command-id="107">2</span></sup><span class="binary-operator" mathquill-command-id="110">=</span><span mathquill-command-id="112">1</span><span mathquill-command-id="114">6</span></span></p><p><span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="116"><span class="textarea"><textarea></textarea></span><span mathquill-command-id="117">⇔</span><span class="non-leaf" mathquill-command-id="120"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="122"><var mathquill-command-id="121">x</var><span mathquill-command-id="123" class="binary-operator">−</span><span mathquill-command-id="125">2</span><var mathquill-command-id="127">y</var></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><sup class="non-leaf" mathquill-command-id="131" mathquill-block-id="133"><span mathquill-command-id="132">2</span></sup><span mathquill-command-id="135" class="binary-operator">+</span><var mathquill-command-id="137">y</var><sup class="non-leaf" mathquill-command-id="139" mathquill-block-id="141"><span mathquill-command-id="140">2</span></sup><span class="binary-operator" mathquill-command-id="143">=</span><span mathquill-command-id="145">1</span><span mathquill-command-id="147">6</span></span></p><p>Vì&nbsp;<span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="149"><span class="textarea"><textarea></textarea></span><var mathquill-command-id="150">x</var><span mathquill-command-id="152">;</span><var mathquill-command-id="154">y</var><span class="binary-operator" mathquill-command-id="156">∈</span><var mathquill-command-id="158">Z</var><span mathquill-command-id="160">⇒</span><span class="non-leaf" mathquill-command-id="163"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="165"><var mathquill-command-id="164">x</var><span mathquill-command-id="166" class="binary-operator">−</span><span mathquill-command-id="168">2</span><var mathquill-command-id="170">y</var></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><sup class="non-leaf" mathquill-command-id="174" mathquill-block-id="176"><span mathquill-command-id="175">2</span></sup><span class="binary-operator" mathquill-command-id="178">∈</span><var mathquill-command-id="180">Z</var><span mathquill-command-id="182">;</span><var mathquill-command-id="184">y</var><sup class="non-leaf" mathquill-command-id="186" mathquill-block-id="188"><span mathquill-command-id="187">2</span></sup><span class="binary-operator" mathquill-command-id="190">∈</span><var mathquill-command-id="192">Z</var></span>&nbsp;&nbsp;</p><p>&nbsp; &nbsp; Và&nbsp;<span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="194"><span class="textarea"><textarea></textarea></span><span class="non-leaf" mathquill-command-id="196"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="198"><var mathquill-command-id="197">x</var><span mathquill-command-id="199" class="binary-operator">−</span><span mathquill-command-id="201">2</span><var mathquill-command-id="203">y</var></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><sup class="non-leaf" mathquill-command-id="207" mathquill-block-id="209"><span mathquill-command-id="208">2</span></sup><span class="binary-operator" mathquill-command-id="211">≥</span><span mathquill-command-id="213">0</span><span mathquill-command-id="215">,</span><var mathquill-command-id="217">y</var><sup class="non-leaf" mathquill-command-id="219" mathquill-block-id="221"><span mathquill-command-id="220">2</span></sup><span class="binary-operator" mathquill-command-id="223">≥</span><span mathquill-command-id="225">0</span></span></p><p><span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="227"><span class="textarea"><textarea></textarea></span><span class="non-leaf" mathquill-command-id="229"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="231"><var mathquill-command-id="230">x</var><span mathquill-command-id="232">;</span><var mathquill-command-id="234">y</var></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span class="binary-operator" mathquill-command-id="238">=</span><span class="non-leaf" mathquill-command-id="241"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="243"><span mathquill-command-id="242">8</span><span mathquill-command-id="244">;</span><span mathquill-command-id="246">4</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span mathquill-command-id="250">,</span><span class="non-leaf" mathquill-command-id="253"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="255"><span mathquill-command-id="254" class="">−</span><span mathquill-command-id="256">8</span><span mathquill-command-id="258">;</span><span mathquill-command-id="260" class="binary-operator">−</span><span mathquill-command-id="262">4</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span mathquill-command-id="266">,</span><span class="non-leaf" mathquill-command-id="269"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="271"><span mathquill-command-id="270">4</span><span mathquill-command-id="272">;</span><span mathquill-command-id="274">0</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span mathquill-command-id="278">,</span><span class="non-leaf" mathquill-command-id="281"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="283"><span mathquill-command-id="282" class="">−</span><span mathquill-command-id="284">4</span><span mathquill-command-id="286">;</span><span mathquill-command-id="288">0</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span></span></p><p>Ta có các tập nghiệm:&nbsp;<span class="math-q mathquill-rendered-math mathquill-editable" mathquill-block-id="292"><span class="textarea"><textarea></textarea></span><span class="non-leaf" mathquill-command-id="294"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="296"><var mathquill-command-id="295">x</var><span mathquill-command-id="297">;</span><var mathquill-command-id="299">y</var></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span class="binary-operator" mathquill-command-id="303">=</span><span class="non-leaf" mathquill-command-id="306"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="308"><span mathquill-command-id="307">8</span><span mathquill-command-id="309">;</span><span mathquill-command-id="311">4</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span mathquill-command-id="315">,</span><span class="non-leaf" mathquill-command-id="318"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="320"><span mathquill-command-id="319" class="">−</span><span mathquill-command-id="321">8</span><span mathquill-command-id="323">;</span><span mathquill-command-id="325" class="binary-operator">−</span><span mathquill-command-id="327">4</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span mathquill-command-id="331">,</span><span class="non-leaf" mathquill-command-id="334"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="336"><span mathquill-command-id="335">4</span><span mathquill-command-id="337">;</span><span mathquill-command-id="339">0</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span><span mathquill-command-id="343">,</span><span class="non-leaf" mathquill-command-id="346"><span class="scaled paren" style="transform: scale(1, 1.05);">(</span><span class="non-leaf" mathquill-block-id="348"><span mathquill-command-id="347" class="">−</span><span mathquill-command-id="349">4</span><span mathquill-command-id="351">;</span><span mathquill-command-id="353">0</span></span><span class="scaled paren" style="transform: scale(1, 1.05);">)</span></span></span>&nbsp;thì thỏa mãn phương trình</p> </div>


Các câu hỏi tương tự
Khánh Anh
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết
truong trong nhan
Xem chi tiết
Nguyễn Thiện Minh
Xem chi tiết
gorosuke
Xem chi tiết
Dũng Kẹo Dẻo
Xem chi tiết
dao duc truong
Xem chi tiết
Ngọc Sunnies
Xem chi tiết
TXT Channel Funfun
Xem chi tiết