Cho đa thức :
\(F\left(x\right)2x^5+x^4+1x^2+x+1\)
\(G\left(x\right)=2x^5+x^4-x^2+1\)
Tính \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)và tìm nghiệm của đa thức
cho đa thức \(f\left(x\right)=4\cdot x^2+3x+1\); \(g\left(x\right)=3x^2-2x+1\); \(k\left(x\right)=7\cdot x^2-35x+42\)
a) tính f(x)-g(x)=h(x)
b) tính nghiệm của h(x) và k(x)
c) tìm gia trị của đa thức h(x) biết:
\(\left(x^2-9\right)^{2021}=\left(\frac{3}{4}-81\right)\cdot\left(\frac{3^2}{5}-81\right)^2\cdot\left(\frac{3^2}{6}-81\right)^3\cdot\cdot\cdot\left(\frac{3^{2020}}{2023}-81\right)^{2020}\)
Tìm nghiệm của đa thức:
\(B=x+2\left(x+1\right)^2-2\)
\(C=x^4.\left(x+2\right)-x^2\)
\(D=3\left|x+2\right|+6\left(x+2\right)^8+6\)
\(H=4\left(x+5\right)^2-2\left|x+3\right|+12\)
Tìm nghiệm đa thức sau:
\(a.B\left(x\right)=\left(x+\frac{1}{2}\right).\left(x-3\right)\\ b.D\left(x\right)=x^2-x\\ c.E\left(x^3+8\right)\\ d.F\left(x\right)=2x-5+\left(x-17\right)\)
\(e.C\left(x\right)=x^2-9\\ f.A\left(x\right)=x^2-4x\\ g.H\left(x\right)=\left(2x+4\right).\left(7-14x\right)\)
\(h.G\left(x\right)=\left(3x-5\right)-\left(18-6x\right)\)
Tìm GTNN của mỗi biểu thức sau:
a) \(P=\left(x+30\right)^2+\left(y-4\right)^2+1975 \)
b)\(Q=\left(3x+1\right)^2+\left|2y-\dfrac{1}{3}\right|+\sqrt{5}\)
c)\(R=\dfrac{3}{1-x-x^2}\)
211. Thu gọn rồi tìm nghiệm của các đa thức sau :
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
c) \(h\left(x\right)=x\left(x-1\right)+1\)
Chứng minh đa thức P(x) có ít nhất ba nghiệm, biết \(\left(x^2-9\right).P\left(x\right)=\left(2x-2\right).P\left(x+1\right)\)
cho hai đa thức \(f\left(x\right)=\left(x-1\right)\left(x-3\right)\) và\(g\left(x\right)=x^3-ax^2+bx-3\)
tìm hệ số a,b biết rằng nghiệm của đa thức g(x) cũng là nghiệm của đa thức f(x)
tìm nghiệm của đa thức:
a)\(\left(x^2-4\right)\left(x+5\right)\)
b)\(x^2-7x+6\)