\(4x^2+6x-1=0\)
\(\Leftrightarrow4x^2+2.3.x-3^2+8=0\)
\(\Leftrightarrow\left(2x-3\right)^2+8=0\)
Ta thấy:\(\left(2x-3\right)^2+8\)
Mà: \(\left(2x-3\right)^2\ge0\)
Nên: \(\left(2x-3\right)^2+8\ge8\)
Khi đó: \(\left(2x-3\right)^2+8=0\)(vô lí)
Vậy đa thức trên vô nghiệm
#hoktot<3#
Làm cái này đi, ko thể hiện nhá >: tại I chưa bt phân tích kiểu chii như vại :333
\(4x^2+6x-1=0\)
\(\Delta=6^2-4.4.\left(-1\right)=36+16=52>0\)
Nên phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-6-\sqrt{52}}{8};x_2=\frac{-6+\sqrt{52}}{8}\)