\(\dfrac{4n+7}{n+1}=\dfrac{n+1+n+1+n+1+n+1+3}{n+1}=1+1+1+1+\dfrac{3}{n+1}\)
Để nguyên thì \(\dfrac{3}{n+1}\in Z\) \(\Rightarrow n+1\in U\left(3\right)=\left\{\pm1;\pm3\right\}\)
- n+1=1 => n=0
- n+1=-1 => n=-2
- n+1=3 => n=2
- n+1=-3 => n=-4
Vậy \(n=\left\{0;-2;2;-4\right\}\)