2n-3 \(⋮\) n+1
=> 2n+2-5 \(⋮\) n+1
=> 2(n+1)-5 \(⋮\) n+1
Mà 2(n+1) \(⋮\) n+1
=> 5 \(⋮\) n+1
=> n+1 ∈ Ư(5)
mà Ư(5) ∈ {1;-1;5;-5}
⇒ n+1 ∈ {1;-1;5;-5}
TH1: n+1=1 => n=0 ∈ Z
TH2: n+1=-1 => n=-2 ∈ Z
TH3: n+1=5 => n= 4 ∈ Z
TH4: n+1=-5 => n= -6∈ Z
=> n ∈ {0;-2;4;6}
`(2n-3) vdots (n+1)`
`-> (2n+2)-3 vdots (n+1)`
`-> -3 vdots (n+1)`
`-> n+1 \in {-3;3;-1;1}`
`-> n \in {-4;2;-2;0}`.