\(\Rightarrow n^2+n-n+3⋮n+1\\ n\left(n+1\right)-n+3⋮n+1\\\Rightarrow n+3⋮n+1\\ \Rightarrow n+1+2⋮n1\\ \Rightarrow2⋮n+1\\ \Rightarrow n+1\in\text{Ư}\left(2\right)=\left\{\pm1;\pm2\right\}\)
ta có :
\(n+1=1\\ n=1-1\\ n=0\\ n+1=-1\\ n=\left(-1\right)+1\\ n=0\\ n+1=2\\ n=2-1\\ n=1\\ n+1=-2\\ n=\left(-2\right)-1\\ n=-3\)