n2+13-13 chia hết cho n+3
=> n2-32+32 chia het cho n+3
=> (n+3)(n-3)+9 chia het cho n+3
Vi (n+3)(n-3) chia het cho n+3 nen 9 chia het cho n+3
=> n+3 thuoc{+1;-1;+3;-3;+9;-9}
=> n thuoc {-2;-4;0;-6;6;-12}
Tìm n thuộc Z để n2 +13n - 13 chia hết cho n + 3
Trả lời:
n2 + 13 - 13 \(⋮\)n + 3
\(\Rightarrow\)n2 - 32 + 32 \(⋮\)n + 3
\(\Rightarrow\)( n + 3 ) ( n - 3 ) + 9 \(⋮\)n + 3
Vì ( n + 3 ) ( n - 3 ) \(⋮\)chia hết cho n + 3 nên 9 \(⋮\)n + 3
\(\Rightarrow n+3\in\left(+1;-1;+3;-3;+9;-9\right)\)
\(\Rightarrow n\in\left\{-2;-4;0;-6;6;-12\right\}\)
\(⋮\)
n2 + 13 - 13 ⋮n + 3
⇒n2 - 32 + 32 ⋮n + 3
⇒( n + 3 ) ( n - 3 ) + 9 ⋮n + 3
Vì ( n + 3 ) ( n - 3 ) ⋮chia hết cho n + 3 nên 9 ⋮n + 3
⇒n+3∈(+1;−1;+3;−3;+9;−9)
⇒n∈{−2;−4;0;−6;6;−12}
⋮
\(\left(n^2+13n-13\right)⋮\left(n+3\right)\)
\(\Rightarrow\left(n^2+3n+10n+30-43\right)⋮\left(n+3\right)\)
\(\Rightarrow\left[n\left(n+3\right)+10\left(n+3\right)+43\right]⋮\left(n+3\right)\)
\(\Rightarrow\left[\left(10+n\right)\left(n+3\right)+43\right]⋮\left(n+3\right)\)
Vì \(\Rightarrow\left[\left(10+n\right)\left(n+3\right)\right]⋮\left(n+3\right)\) nên \(43⋮\left(n+3\right)\)
\(\Rightarrow n+3\inƯ\left(43\right)=\left\{\pm1;\pm43\right\}\)
Lập bảng:
\(n+3\) | \(-1\) | \(1\) | \(-43\) | \(43\) |
\(n\) | \(-4\) | \(-2\) | \(-46\) | \(40\) |
Vậy \(x\in\left\{-4;-2;-46;40\right\}\)