Ta có: \(A=n.\left(n+6\right)+5.\left(n+6\right)=n^2+6n+5n+30=n^2+11n+30\)
A:6n=\(\frac{n^2+11n+30}{6n}=\frac{1}{6}\left(n+11+\frac{30}{n}\right)\)
A chia hết cho 6n <=> \(\hept{\begin{cases}n\inƯ\left(30\right)\left(1\right)\\n+11+\frac{30}{n}\in\end{cases}B\left(6\right)\left(2\right)}\)
+) (1)<=> n thuộc {1,30,2,15,3,10,5,6}
Với n=1 thay vào 2 ta có: 1+11+30=42 chia hết cho 6 ( tm)
Với n=30 thay vào (2) ta có: 30+11+30/30=42 chia hết cho 6 ( tm)
Với n=2 thay vào (2) ta có: 2+11+30/2=28 không chia hết ho 6 (loại)
Với n=15 loại
Với n=3 tm
n=10 tm
n=5 , n=6( loẠI)
Vậy n=1,3,10,30