=>\(2\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{n\left(n+1\right)}\right)=\dfrac{4039}{2020}\)
=>\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{4039}{4040}\)
=>1-1/(n+1)=4039/4040
=>1/(n+1)=1/4040
=>n+1=4040
=>n=4039