a)1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau
b)Tương tự thôi,Số nguyên tố dễ mà,bạn tự tính nhé
a,Đặt: UC(9n+24,3n+4)=d
=> \(\hept{\begin{cases}9n+24⋮d\\3n+4⋮d\end{cases}\Rightarrow}9n+24-3\left(3n+4\right)⋮d\Leftrightarrow12⋮d\)
=> d=1,2,3,6,12
Xét thấy: 3n+4 không chia hết cho 3 nên => d\(\ne\)3,6,12 => d=1, 2
Để 9n+24 và 3n+4 nguyên tố cùng nhau <=> 9n+24 lẻ <=> 9n lẻ hay n lẻ
Vậy n lẻ thì 2 số nguyên tố cùng nhau
Cách 2:
Xét n chẵn: => cả 2 số đều chẵn => không nguyên tố cùng nhau
Xét n lẻ: có 9n+24=3(3n+8)
Mặt khác 3n+4 không chia hết cho 3 => xét: 3n+8-(3n+4)\(⋮\)d hay 4\(⋮\)d
Mà n lẻ nên 2 số đều lẻ
=> d=1
Vậy n lẻ thì 2 số nguyên tố cùng nhau
b, Đặt: d=UC(4n+3,2n+3)
=> \(\hept{\begin{cases}4n+3⋮d\\2n+3⋮d\end{cases}\Rightarrow}2\left(2n+3\right)-\left(4n+3\right)⋮d\Leftrightarrow3⋮d\)
Vậy d=1 hoặc 3
Để d=1<=> 4n+3 không chia hết cho 3 <=> n không chia hết cho 3
Vậy với n không chia hết cho 3 thì 2 số nguyên tố cùng nhau
b, n ko chia hết cho3