Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phương Oanh

Tìm n để các số sau có UCLN = 1

a) 3n+4 và 5n+7

b)8n+10 và 7n+10

soyeon_Tiểu bàng giải
2 tháng 8 2016 lúc 12:42

a) Gọi d = ƯCLN(3n + 4; 5n + 7) (d thuộc N*)

=> 3n + 4 chia hết cho d; 5n + 7 chia hết cho d

=> 5.(3n + 4) chia hết cho d; 3.(5n + 7) chia hết cho d

=>15n + 20 chia hết cho d; 15n + 21 chia hết cho d

=> (15n + 21) - (15n + 20) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> UCLN(3n + 4; 5n + 7) = 1

Vậy với mọi n thì UCLN(3n + 4; 5n + 7) luôn = 1

b) Gọi d = UCLN(8n + 10; 7n + 10) (d thuộc N*)

=> 8n + 10 chia hết cho d; 7n + 10 chia hết cho d

=> 7.(8n + 10) chia hết cho d; 8.(7n + 10) chia hết cho d

=> 56n + 70 chia hết cho d; 56n + 80 chia hết cho d

=> (56n + 80) - (56n + 70) chia hết cho d

=> 10 chia hết cho d

Mà d thuộc => d thuộc {1 ; 2 ; 5}

+ Với d = 2 thì 8n + 10 chia hết cho 2 (luôn đúng); 7n + 10 chia hết cho 2

=> 7n chia hết cho 2. Mà (7;2)=1 => n chia hết cho 2 => n = 2k (k thuộc N)

+ Với n = 5 thì 8n + 10 chia hết cho 5; 7n + 10 chia hết cho 5

Do 10 chia hết cho d => 8n chia hết cho 5; 7n chia hết cho 5

Mà (8;5)=1; (7;5)=1 => n chia hết cho 5 => n = 5k (k thuộc N)

Vậy với \(n\ne2k\)và \(n\ne5k\)(k thuộc N) thì 8n + 10 và 7n = 10 có UCLN = 1

Edogawa Conan
2 tháng 8 2016 lúc 21:59

a) Gọi d = ƯCLN(3n + 4; 5n + 7) (d thuộc N*)

=> 3n + 4 chia hết cho d; 5n + 7 chia hết cho d

=> 5.(3n + 4) chia hết cho d; 3.(5n + 7) chia hết cho d

=>15n + 20 chia hết cho d; 15n + 21 chia hết cho d

=> (15n + 21) - (15n + 20) chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> UCLN(3n + 4; 5n + 7) = 1

Vậy với mọi n thì UCLN(3n + 4; 5n + 7) luôn = 1

b) Gọi d = UCLN(8n + 10; 7n + 10) (d thuộc N*)

=> 8n + 10 chia hết cho d; 7n + 10 chia hết cho d

=> 7.(8n + 10) chia hết cho d; 8.(7n + 10) chia hết cho d

=> 56n + 70 chia hết cho d; 56n + 80 chia hết cho d

=> (56n + 80) - (56n + 70) chia hết cho d

=> 10 chia hết cho d

Mà d thuộc => d thuộc {1 ; 2 ; 5}

+ Với d = 2 thì 8n + 10 chia hết cho 2 (luôn đúng); 7n + 10 chia hết cho 2

=> 7n chia hết cho 2. Mà (7;2)=1 => n chia hết cho 2 => n = 2k (k thuộc N)

+ Với n = 5 thì 8n + 10 chia hết cho 5; 7n + 10 chia hết cho 5

Do 10 chia hết cho d => 8n chia hết cho 5; 7n chia hết cho 5

Mà (8;5)=1; (7;5)=1 => n chia hết cho 5 => n = 5k (k thuộc N)

Vậy với $n\ne2k$n≠2kvà $n\ne5k$n≠5k(k thuộc N) thì 8n + 10 và 7n = 10 có UCLN = 1


Các câu hỏi tương tự
Đặng Phương Thảo
Xem chi tiết
Đặng Phương Thảo
Xem chi tiết
Đặng Phương Thảo
Xem chi tiết
𝓐𝓼𝓾𝓷𝓪
Xem chi tiết
Nguyễn Thị Huyền
Xem chi tiết
Nguyễn Hoàng Phúc
Xem chi tiết
phan thị thu huyền
Xem chi tiết
Lê Hữu Minh Chiến
Xem chi tiết
HiepNghia NguyenDuc
Xem chi tiết