Lời giải:
Từ đề bài ta có:
$(\frac{2}{5})^n+(\frac{3}{5})^n=1$
Nếu $n>1$ thì $(\frac{2}{5})^n< \frac{2}{5}; (\frac{3}{5})^n< \frac{3}{5}$
$\Rightarrow (\frac{2}{5})^n+(\frac{3}{5})^n< \frac{2}{5}+\frac{3}{5}=1$
Nếu $n<1$ thì $(\frac{2}{5})^n> \frac{2}{5}; (\frac{3}{5})^n> \frac{3}{5}$
$\Rightarrow (\frac{2}{5})^n+(\frac{3}{5})^n> \frac{2}{5}+\frac{3}{5}=1$
Do đó $n=1$
Thử lại thấy đúng.
Vậy........