\(2^{n+3}-2^{n+2}+2^{n+1}=48\)
\(\Rightarrow2^n\cdot\left(2^3-2^2+2\right)=48\)
\(\Rightarrow2^n\cdot\left(8-4+2\right)=48\)
\(\Rightarrow2^n\cdot6=48\)
\(\Rightarrow2^n=\dfrac{48}{6}\)
\(\Rightarrow2^n=8\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)