Vậy .....................
Tìm MIN \(M=\frac{8x^2+6xy}{x^2+y^2}=\frac{-\left(x^2+y^2\right)+\left(9x^2+6xy+y^2\right)}{x^2+y^2}=\frac{\left(3x+y\right)^2}{x^2+y^2}-1\ge-1\)Vậy ..........................
Vậy .....................
Tìm MIN \(M=\frac{8x^2+6xy}{x^2+y^2}=\frac{-\left(x^2+y^2\right)+\left(9x^2+6xy+y^2\right)}{x^2+y^2}=\frac{\left(3x+y\right)^2}{x^2+y^2}-1\ge-1\)Vậy ..........................
tìm min của \(M=\frac{8x^2+6xy}{x^2+y^2}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của \(P=\frac{8x^2+6xy}{x^2+y^2}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của \(P=\frac{8x^2+6xy}{x^2+y^2}\).
Các bn giúp mk bài này nhanh nhé! Mk đag cần gấp:
a,Tìm min của P= \(x^4-8x^3+28x^2-48x+35\)
b, Cho x,y>0 và x+y=6. Tìm min của Q= \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{100}{xy}+xy\)
Tìm Min của f(x ; y) = x2 + 10y2 + 6xy - 12x + 66y + 36
Tìm Min và Max của A=\(\frac{6-8x}{x^2+1}\)
\(\left\{{}\begin{matrix}\left(m+2\right)x+3y=4m-1\\2x-y=3\end{matrix}\right.\)
Tìm m để hệ có nghiệm duy nhất (x,y) thỏa mãn `y^2 -3x^2 +8x` đạt Min
Cho x,y>0. Tìm min của
M=\(\frac{x}{y}+\frac{y}{x}+\frac{xy}{x^2+y^2}\)
Cho các số thực dương x,y,z t/m xy+yz+xz=1
Tìm min của \(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)