Có B = \(\dfrac{12}{x-1}+\dfrac{x}{3}=\dfrac{12}{x-1}+\dfrac{x-1}{3}+\dfrac{1}{3}\)
Áp dụng BĐT Cô si cho 2 số \(\dfrac{12}{x-1},\dfrac{x-1}{3}>0\)
\(\Rightarrow\dfrac{12}{x-1}+\dfrac{x-1}{3}\ge2.\sqrt{\dfrac{12}{x-1}.\dfrac{x-1}{3}}=4\)
\(\Leftrightarrow\dfrac{12}{x-1}+\dfrac{x-1}{3}+\dfrac{1}{3}\ge\dfrac{13}{3}\)
hay B \(\ge\dfrac{13}{3}\)
Dấu ''='' xảy ra \(\Leftrightarrow\dfrac{12}{x-1}=\dfrac{x-1}{3}\)
\(\Leftrightarrow\left(x-1\right)^2=36\)
\(\Leftrightarrow x-1=6\Leftrightarrow x=7\)
Vậy min B = 13/3 \(\Leftrightarrow\) x = 7