a). \(C=\dfrac{x^4+x^8+x^{12}+x^{16}+x^{20}+x^{24}+x^{28}+1}{x^3+x^7+x^{11}+x^{15}+x^{19}+x^{23}+x^{27}+x^{31}}\)
b). \(F=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{2011.2012.2013.2014}\)
c). \(\dfrac{14044}{12345}=1+\dfrac{1}{7+\dfrac{1}{8+\dfrac{1}{9+\dfrac{1}{x+\dfrac{1}{y}}}}}\)
\(a.C=\dfrac{x^4+x^8+x^{12}+x^{16}+x^{20}+x^{24}+x^{28}+1}{x^3+x^7+x^{11}+x^{15}+x^{19}+x^{23}+x^{27}+x^{31}}=\dfrac{x^{28}+x^{24}+...+x^8+x^4+1}{x^3\left(x^{28}+x^{24}+...+x^8+x^4+1\right)}=\dfrac{1}{x^3}\) Tại x = 2015 thì : \(C=\dfrac{1}{x^3}=\dfrac{1}{2015^3}\)
\(b.F=\dfrac{1}{1.2.3.4}+\dfrac{1}{2.3.4.5}+\dfrac{1}{3.4.5.6}+...+\dfrac{1}{2011.2012.2013.2014}\)
\(3F=\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+\dfrac{3}{3.4.5.6}+...+\dfrac{3}{2011.2012.2013.2014}\)
\(3F=\dfrac{1}{1.2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{2.3.4}-\dfrac{1}{3.4.5}+\dfrac{1}{3.4.5}-\dfrac{1}{4.5.6}+...+\dfrac{1}{2011.2012.2013}-\dfrac{1}{2012.2013.2014}\)
\(3F=\dfrac{1}{1.2.3}-\dfrac{1}{2012.2013.2014}\)
Tới đây dễ rồi , bạn tự tính nốt .