Lời giải:
\(A=x^2-5x+y^2+xy-4y+2017\)
\(\Leftrightarrow x^2+x(y-5)+(y^2-4y+2017-A)=0\)
Vì pt xác định nên luôn có nghiệm. Tức là:
\(\Delta=(y-5)^2-4(y^2-4y+2017-A)\geq 0\)
\(\Leftrightarrow -3y^2+6y-8043+4A\geq 0\)
\(\Leftrightarrow 4A\geq 3y^2-6y+8043=3(y-1)^2+8040\geq 8040\)
\(\Rightarrow A\geq 2010\)
Vậy \(A_{\min}=2010\)