\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^3-x^3y^2\)
\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-\left(xy\right)^2\left(x+y\right)\)
\(=10.26-\left(-3\right)^2.2=...\)
(x+y)5=32
⇔ x5+5x4y+10x3y2+10x2y3+5xy4+y5 = 32
⇔ x5+y5 = 32-5xy(x3+y3)-10x2y2(x+y)
= 32-5.(-3).26-10.(-3)2.2
= 242
Với \(x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^4-x^4y^3\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)\)
\(=26.82-\left(-3\right)^3.2=...\)