\(\frac{\sqrt{\left(x-2017\right)2019}}{\sqrt{2019}\left(x+2\right)}+\frac{\sqrt{\left(x-2018\right)2018}}{\sqrt{2018}x}\le\frac{x-2017+2019}{2\sqrt{2019}\left(x+2\right)}+\frac{x-2018+2018}{2\sqrt{2018}x}\)
\(=\frac{1}{2\sqrt{2019}}+\frac{1}{2\sqrt{2018}}\)
''='' khi x=4036