1, Cho x,y≥0 thỏa mãn 2x+3y=1 Tìm GTLN, GTNN của A=x^2+3y^2
2, Cho x^2+y^2=52 Tìm GTLN, GTNN của A=2x+3y+4
3, Cho x,y>0và x+y=1 Tìm GTNN của A=(1+1x )/(1+1y )
1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
1. Cho các số thực dương x,y thỏa mãn x + xy + y = 8. Tính GTNN của biểu thức \(A=x^3+y^3+x^2+y^2+5\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\)
2. Cho a,b,c > 1. Tính GTNN của biểu thức \(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
3. Cho 2 số \(x,y\ne0\) thỏa mãn đẳng thức sau: \(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\). Tính GTLN của biểu thức \(C=\frac{1}{xy}\)
4. Cho các số thực dương a,b,c thỏa mãn abc = 1. Cmr: \(D=\frac{a^4}{b^2\left(c+2\right)}+\frac{b^4}{c^2\left(a+2\right)}+\frac{c^4}{a^2\left(b+2\right)}\ge1\)
5. Cho a,b,c là các số dương không lớn hơn 1. Cmr: \(\sqrt{a}+\sqrt{b}+\sqrt{c}\ge ab+bc+ca\)
6. Cho 2 số thực x,y thỏa mãn điều kiện \(x-3\sqrt{x+1}=3\sqrt{y+2}-y\). Cmr: \(\frac{9+3\sqrt{21}}{2}\le x+y\le9+3\sqrt{15}\).
7. Cho x,y,z là các số thực dương thỏa mãn x + y + z = 1. Cmr: \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\).
8. Cho x,y,z là các số thực dương thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015.\) Tìm GTNN của biểu thức: \(P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\).
9. Cho các số thực dương x,y thỏa mãn \(\left(x+y-1\right)^2=xy\). Tìm GTNN của biểu thức: \(M=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\).
10. Tìm m để phương trình \(mx^2-\left(5m-2\right)x+6m-5=0\) có 2 nghiệm nghịch đảo nhau.
11. Cho 2 số thực dương x,y thỏa mãn \(x^2+y\ge1\). Tìm GTNN của biểu thức: \(N=y^2+\left(x^2+2\right)^2\).
12. Cho 9 số thực \(a_1,a_2,...,a_9\) không nhỏ hơn -1 và \(a_1^3+a_2^3+...+a_9^3=0\). Tính GTLN của biểu thức \(Q=a_1+a_2+...+a_9\).
13. cho a,b,c > 0 và a + b + c = 1. Cmr: \(\sqrt{2015a+1}+\sqrt{2015b+1}+\sqrt{2015c+1}< 78\)
Mn làm giúp mk với. Mk đang cần gấp
1/CMR
a/\(x^4-2x^3+2x^2-2x+1\ge0\forall x\in R\)
b/cho \(a\ge0,b\ge2,a+b+c=3\). CMR : \(a^2+b^2+c^2\le5\)
c/cho a,b,c >0 . CMR : \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\ge4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
2/ cho \(x,y\ge0,x+y=1\). tìm GTLN,GTNN của A =\(x^2+y^2\)
3/ cho x,y>0 .tìm GTNN của B= \(\frac{\left(x+y\right)^2}{x^2+y^2}+\frac{\left(x+y\right)^2}{xy}\)
câu 1 : a )Cho a,b là các số thực thỏa ab=1 . tìm gtnn A = \(\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
b)Cho xy>0 và \(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
Tính GTLN M=\(\frac{1}{x}+\frac{1}{y}\)
c) Cho a,b,c là các số dương . C/m T=\(\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\)
Câu 2 Giải phương trình a ) \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
b) \(x+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
c) \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
d) \(2-\sqrt{3-2x}=\left|2x-3\right|\)
câu 3 Tính a) A=\(\sqrt{1+1999^2+\frac{1999^2}{200^2}}+\frac{1999}{2000}\)
b) M=\(\frac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
c) Tìm nghiệm nguyê dương của pt : xy+yz+zx=xyz+2
d) Tìm các số nguyên x để \(x^4-x^2+2x+2\)
là số chính phương
e) Tìm số nguyên dương n để A = \(n^{2006}+n^{2005}+1\)
là số nguyên tố
Câu 1 : a, Cho A = \(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\) B = \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{35}}\) so sánh A và B
b, cho x,y ∈ Q sao , thỏa mãn x3 + y3=2x2y2 .CMR : B = \(\sqrt{1-\frac{1}{xy}}\) là số hữu tỉ .
Câu 2 : a, tìm nghiệm nguyên dương của pt x4+x2+1=y2
b, giải pt \(\left(x+2\right)\left(x+4\right)=2\sqrt{2x+5}-2\)
Câu 3 : cho các số không âm a,b,c thỏa mãn a+b+c=3. Tìm GTLN và GTNN của bth P= \(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\)
Cho x,y không âm thỏa mãn: x2 + y2 = 2. Tìm GTNN, GTLN của A = \(\frac{x^3+y^3+1}{xy+1}\)
Bài 1: Tìm GTNN và GTLN của biểu thức B=\(\frac{\sqrt{x}}{x+1}\)
Bài 2: Tìm GTNN,GTLN của M=\(\frac{4\sqrt{x}}{x+2\sqrt{x}+1}\)
b, \(D=\frac{x^5+2}{x^3}\) Với x > 0
4, (34, 36/ 221) Tìm GTNN của bt: a, E=\(x^2+\frac{2}{x^3}\) với x > 0; b, \(F=\frac{x^3+1}{x^2}\) Với x > 0
6, (68/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(Q=\frac{x^2+2x+17}{2\left(x+1\right)}\) Với x > 0
7, (69/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(R=\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\) Với x > 0
8, (70/28 BÙI VĂN TUYÊN) Tìm GTNN của bt: \(S=\frac{x^3+2000}{x}\) Với x > 0