Đáp án D
Ta có: y ' = x 2 − 2 m x + 4 m − 3 . Để hàm số đồng biến trên R thì y ' ≥ 0 ∀ x ∈ ℝ
⇔ Δ ' = m 2 − 4 m + 3 ≤ 0 ⇔ 1 ≤ m ≤ 3 ⇒ m lớn nhất bằng 3
Đáp án D
Ta có: y ' = x 2 − 2 m x + 4 m − 3 . Để hàm số đồng biến trên R thì y ' ≥ 0 ∀ x ∈ ℝ
⇔ Δ ' = m 2 − 4 m + 3 ≤ 0 ⇔ 1 ≤ m ≤ 3 ⇒ m lớn nhất bằng 3
Cho hàm số y = 1 3 x 3 - m x 2 + ( 4 m - 3 ) x + 2017 . Tìm giá trị lớn nhất của tham số thực m để hàm số đã cho đồng biến trên R
A.m=2
B.m=3
C.m=4
D.m=1
tìm m để hàm số đồng biến trên R
y=\(\frac{1}{3}\)x^3+(m+1)x^2+(5m-1)x-m
Cho hàm số y = m 3 x 3 - 2 x 2 + ( m + 3 ) x + m . Tìm giá trị nhỏ nhất của tham số m để hàm số đồng biến trên R.
A. m = -4
B. m = 0
C. m = -2
D. m = 1
Tìm m để hàm số y = 2 x 3 + 3 ( m - 1 ) x 2 + 6 ( m - 2 ) x + 3 nghịch biến trên một khoảng có độ dài lớn hơn 3.
A. m > 6
B. m ∈ ( 0 ; 6 )
C. m < 0
D. m < 0 hoặc m > 6
Tìm m để hàm số y = x 3 - 3 m x 2 + 3 ( 2 m - 1 ) x + 1 đồng biến trên R
A. m = 1
B. Luôn thỏa mãn với mọi m
C. Không có giá trị m thỏa mãn
D. m ≠ 1
Tìm m để hàm số y = x 3 − 2 x 2 + ( m − 1 ) x + 3 − m đồng biến trên khoảng ( 1 ; + ∞ ) .
A. m ≤ 3
B. m > 3
C. m < -1
D. m ≥ 2
Tìm tất cả các giá trị tham số m để hàm số y = - 1 3 x 3 + ( m - 1 ) x 2 + ( m + 3 ) x - 4 đồng biến trên (0;3)
A. m ≥ 1 7
B. m ≥ 4 7
C. m ≥ 8 7
D. m ≥ 12 7
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
tìm dk của m để hàm số y=\(x^3-3x^2+mx-1\)là đồng biến trên R