a: Trường hợp 1: m=0
Pt sẽ là \(6\cdot\left(-2\right)x+4\cdot0-7=0\)
=>-12x-7=0
=>x=-7/12(nhận)
Trường hợp 2: m<>0
\(\Delta=\left(6m-12\right)^2-4m\left(4m-7\right)\)
\(=36m^2-144m+144-16m^2+28m\)
\(=20m^2-116m+144\)
Để phương trình có nghiệm thì \(20m^2-116m+144>=0\)
Đặt \(20m^2-116m+144=0\)
\(\Delta=\left(-116\right)^2-4\cdot20\cdot144=1936\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=4\\m_2=\dfrac{9}{5}\end{matrix}\right.\)
Do đó: Bất phương trình xảy ra khi m<=9/5 hoặc m>=4
Vậy: m<=9/5 hoặc m>=4
b: Trường hợp 1: m=0
Pt sẽ là 1=0(vô lý)
Trường hợp 2: m=1
Pt sẽ là 2x+1=0
hay x=-1/2(nhận)
Trường hợp 3: m khác 0 và m khác 1
\(\Delta=\left(2m\right)^2-4\left(m^2-m\right)=4m^2-4m^2+4m=4m\)
Để phương trình có nghiệm thì 4m>0
hay m>0
Vậy: m>0