Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Cho hàm số y = f (x) có đạo hàm liên tục trên ℝ , với f (x) > 0 và f (0) = 1. Biết rằng f ' ( x ) + 3 x x - 2 f ( x ) = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4
B. - e 6 < m < - 1
C. - e 4 < m < - 1
D. 0 < m < e 4
Tìm tất cả các tham số m để hàm số y = 3 ( m - 1 ) x - ( 2 m + 1 ) nghịch biến trên ℝ
A. 2 5 ≤ m ≤ 4
B. m ≤ 2 5
C. m ≤ 4
D. 2 5 < m < 4
Tìm m để hàm số y = cos x - 2 cos x - m nghịch biến trên khoảng 0 ; π 2
A. m ≥ 2 m ≤ - 2
B. m > 2
C. m ≤ 0 1 ≤ m < 2
D. - 1 < m < 1
Cho hàm số y=f(x) xác định trên ℝ \ 0 , liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình vẽ sau:
Tìm tất cả các giá trị của tham số thực m để phương trình f(x)-m=0 có nghiệm duy nhất.
A. m ∈ 3 ; + ∞
B. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
C. m ∈ 3 ; + ∞
D. m ∈ − ∞ ; 1 ∪ 3 ; + ∞
Cho hàm số y = f x liên tục trên ℝ và có bảng biến thiên:
Tìm m để phương trình 2 f x + m = 0 có 3 nghiệm phân biệt
A. m = - 2
B. m = 4
C. m = 2
D. m = - 1
Có bao nhiêu số nguyên m<100 để hàm số y = x + m x 2 + x + 1 nghịch biến trên khoảng ( 0 ; + ∞ ) .
A. 98.
B. 99.
C. 97.
D. 96.
Tìm tất cả các giá trị tham số m để hàm số y = 1 3 ( m - 1 ) x 3 - ( m - 1 ) x 2 - x + 1 nghịch biến trên ℝ
A. m ≥ 1 m ≤ 0
B. 0 ≤ m ≤ 1
C. m ≥ 1 m ≤ - 3
D. - 3 ≤ m ≤ 1
Tìm tất cả các giá trị thực của m để hàm số f x = x + 1 − 1 x khi x > 0 x 2 + 1 − m khi x ≤ 0 liên tục trên ℝ .
A. m = 3 2 .
B. m = 1 2 .
C. m = − 2.
D. m = − 1 2 .