Nếu m = 4 => y = -5
Đường thẳng y = -5 song song với trục Ox , khi đó sẽ ko có tam giác
=> m = 4 (loại)
Do đó m \(\ne\)4
*Tại x = 0 thì y = -5
=> Giao điểm của đths y = ( 4 - m )x - 5 với trục Oy là điểm A(0;-5)
\(\Rightarrow OA=\sqrt{\left(0-0\right)^2+\left[0-\left(-5\right)\right]^2}=5\)
*Tại y = 0 thì \(x=\frac{5}{4-m}\)
=> giao điểm của đths y = (4 - m)x - 5 với trục Ox là điểm \(B\left(\frac{5}{4-m};0\right)\)
\(\Rightarrow OB=\sqrt{\left(0-\frac{5}{4-m}\right)^2+\left(0-0\right)^2}=\frac{5}{\left|4-m\right|}\)
Vì \(S_{AOB}=3\)mà tam giác này vuông tại O
\(\Rightarrow OA.OB=3\)
\(\Leftrightarrow5.\frac{5}{\left|4-m\right|}=3\)
\(\Leftrightarrow\frac{25}{\left|4-m\right|}=3\)
\(\Leftrightarrow\left|4-m\right|=\frac{25}{3}\)
\(\Leftrightarrow\orbr{\begin{cases}4-m=\frac{25}{3}\\4-m=-\frac{25}{3}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=-\frac{13}{3}\\m=\frac{37}{3}\end{cases}}\left(TmĐK:m\ne4\right)\)
Vậy \(m\in\left\{-\frac{13}{3};\frac{37}{3}\right\}\)thỏa mãn bài toán