Cho P = \(\left(\frac{4\sqrt{x}}{\sqrt{x}+2}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tìm x để P = -1
c) Tìm m để có x thỏa mãn : \(\left(\sqrt{x}-3\right)P< 1-2\sqrt{x}-m\)
\(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a, Rút gọn
b, Tìm x để P=-1
c, tìm m để với mọi giá trị x>9 Ta có \(m\left(\sqrt{x}-3\right)P>x+1\)
1. A= \(\left(\sqrt{x}-\frac{x+2}{\sqrt{x}-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}-4}{1-x}\right)\)
a. Rút gọn A
b. Tìm x để A<0
c. Tìm giá trị nhỏ nhất A.
2. M=\(\left(\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\right):\left(1+\frac{x+4}{x+\sqrt{x}+1}\right)\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị nguyên
3. N=\(\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{a.b}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{a.b}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
a. Rút gọn N
b. Tính N khi a=\(\frac{2}{2-\sqrt{3}}\)
c. Tìm số nguyên a để N có giá trị nguyên
Gíup mình với. Cảm ơn nhiều ạ.
Cho \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{2\sqrt{x}+7}{x-4}\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+1\right)\)
Tìm m để P = M
Cho biểu thức:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn biểu thức P
b)Tìm x để \(p< -\frac{1}{2}\)
c)Tìm x để \(P.\left(\sqrt{x}+3\right)+2\sqrt{x}-2+x=2\)
d)Tìm m để \(P.\left(\sqrt{x}+3\right)+x\left(\sqrt{x}-m\right)=x-\sqrt{x}\left(3+m\right)\)
Cho biểu thức \(P=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
Tìm m để với mọi giá trị x>9 ta có \(m\left(\sqrt{x}-3\right)P>x+1\)
(KQ: \(P=\frac{4x}{\sqrt{x}-3}\)
P=\(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}-\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)
a) Rút gọn P
b) Tính x để P=-1
c) Tìm m để với mọi giá trị x>9 ta có m(\(\sqrt{x}\)- 3)P > x+1
co biểu thức P=\(\left(\frac{\sqrt{x}+3}{\sqrt{x}+2}+\frac{4x\sqrt{x}+3x+9}{x-\sqrt{x}-6}\right):\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}+3}{x+5\sqrt{x}+6}\right)\)
tìm giá trị của m để có giá trị x>1 thỏa mãn: \(m\left(\sqrt{x}-3\right)P=12m\sqrt{x}-4\)
cho \(M=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{2x}{9-x}\right):\left(\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{2}{\sqrt{x}}\right)\)
a) rút gọn M
b) tìm các giá trị của m để vs mọi X>16 ta đều có M > \(y=\frac{m-3x+1}{\sqrt{x}-4}\)