Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trương  Tiền  Phương

Tìm hình vuông có kích thước nhỏ nhất để trong hình vuông đó có thể sắp xếp được 5 hình tròn có bán kính bằng 1, sao cho không có hai hình tròn bất kì nào trong chúng có điểm trong chung.

Kiệt Nguyễn
13 tháng 7 2020 lúc 18:07

Giả sử hình vuông ABCD có tâm O và cạnh a, chứa năm hình tròn không cắt nhau và đều có bán kính bằng 1

Vì cả năm hình tròn này đều nằm trọn trong hình vuông nên các tâm của chúng nằm trong hình vuông \(A'B'C'D'\)có tâm O và cạnh \(a-2\), ở đây \(A'B'//AB\)

Các đường thẳng nối các trung điểm cùa các cạnh đối diện của hình vuông \(A'B'C'D'\)chia \(A'B'C'D'\)thành 4 hình vuông nhỏ

Theo nguyên lí Dirichlet tồn tại một trong 4 hình vuông nhỏ mà trong hình vuông này chứa ít nhất hai trong số 5 tâm hình tròn nói trên (không mất tính tổng quát ta giả sử là \(O'\)và \(O''\))

Để ý rằng vì không có hai hình tròn nào (trong số năm hình tròn) cắt nhau nên \(O'O''\ge2\)

Mặt khác do \(O'\)\(O''\)cùng nằm trong một hình vuông nhỏ (cạnh của hình vuông nhỏ đó bằng \(\frac{a-2}{2}\)) nên ta lại có \(O'O''\le\frac{a-2}{2}.\sqrt{2}\). Từ đó ta suy ra được\(\frac{a-2}{2}.\sqrt{2}\ge2\Rightarrow a\ge2\sqrt{2}+2\)

Vậy mọi hình vuông cạnh a thỏa mãn yêu cầu đề bài, ta đều có \(a\ge2\sqrt{2}+2\)

Bây giờ xét hình vuông \(ABCD\)có \(a=2\sqrt{2}+2\)

Xét năm hình tròn có tâm là \(O,A',B',C',D'\)thì mọi yêu cầu của đề bài thỏa mãn.

Tóm lại, hình vuông có kích thước bé nhất cần tìm là hình vuông với cạnh \(a=2\sqrt{2}+2\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Họ Và Tên
Xem chi tiết
Nguyễn Trọng Tuấn
Xem chi tiết
Tăng Ngọc Đạt
Xem chi tiết
soqn
Xem chi tiết
Thanh Tùng Nguyễn
Xem chi tiết
Cao Vương
Xem chi tiết
kudo shinichi
Xem chi tiết
kien
Xem chi tiết
Pham Trong Bach
Xem chi tiết