Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó,góc BOC có số đo bằng bao nhiêu?
(A) 60 ° (B) 120 °
(C) 240 ° (D) Không tính được.
Cho đường tròn tâm O, bán kính R và một điểm A sao cho OA=2R. VẼ các tiếp tuyến AB,AC ( B,C) là các tiếp điểm. Đường thẳng OA cắt BC tại H, cắt cung nhỏ BC và cung lớn BC lần lượt tại I,K
a/ CM OA vuông góc với BC, HI=OA=R bình phương
b/ CM tam gaics ABC đều, tứ giác ABKC là hình thoi
c/ CHứng tỏ I là tâm đường tròn nội tiếp tam giác ABC. Tính theo R bán kính của đường tròn này.
d/ Vẽ cát tueyens bất kì AMN của đường tròn tâm O. Gọi E là tủng điểm MN. CHứng tỏ 5 điểm O,E,A,B,C cùng thuộc một đường tròn
Cho nửa đường tròn (O;R) , đường kính AB. Các điểm C và D bất kì thuộc cung AB sao cho số đo cung CD bằng 90 độ (C thuộc cung AD).Gọi E là giao điểm của AC và BD,K là giao điểm của AD và BC.
a) Tính số đo góc CED
b) Chứng minh tứ giác ECKD nội tiếp và xác định tâm I của đường tròn đó
c) Chứng minh rằng OD là tiếp tuyến của đường tròn ngoại tiếp tứ giác ECKD
d) Chứng minh rằng tổng AK.AC + BK.BC không phụ thuộc vào vị trí của 2 điểm C và D
Mình cần câu d) gấp lắm...
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
Cho đường tròn tâm O bán kính r. Gọi M là điểm bất kì nằm ngoài đường tròn tâm O kẻ cát tuyến bất kì MAB với (0) ( A nằm giữ M và B). Kẻ đường kính BC. Đường MC cắt (0) tại điểm thứ hai là D ( C nằm giữa M và D). Gọi N là giao điểm của AC và BD
a) CMR: BACD là tứ giác nội tiếp và góc AMC = DNC
b) CMR: BC vuông góc MN tại H
c) CMR: DCHN là tứ giác nội tiếp rồi chứng minh: MC .MD + NA .NC = MN2
d) Cho biết góc DNC = 450 Tính diện tích viên phân chắn cung AD theo R
Cho đường tròn tâm O bán kính R và một điểm M sao cho OM=2R,từ M kẻ hai tiếp tuyến MA,MB của đường tròn tâm O bán kính R (A,B là tiếp điểm).
a)Chứng minh tam giác MAB đều,tính AM theo R
b)Qua điểm C thuộc ucng nhỏ AB vẽ tiếp tuyến với đường tròn tâm O bán kính R cắt MA tại E,cắt MB tại F,OF cắt AB tại K,OE cắt AB tại H.Chứng minh EK vuống góc với OF
c)Khi số đo cung BC=90 độ.Tính EF và diện tích tam giác OHK theo R
Trên đường tròn tâm O bán kính R lấy hai điểm A và B sao cho AB = R. Số đo góc
AOB chắn cung nhỏ AB có số đo là :
A.30 0 B. 60 0 C. 90 0 D . 120 0
Tính theo R độ dài các dây cung chắn các góc nội tiếp đường tròn tâm (O) bán kính R ở số đó lần lượt là 30, 45, 60, 90
Cho đường tròn (O; R) có đường kính AB. Bán kính CO vuông góc với AB, M là một điểm bất kỳ trên cung nhỏ AC (M thuộc cung A, C); BM cắt AC tại H. Gọi K là hình chiếu của H trên AB.
1) Chứng minh CBKH là tứ giác nội tiếp.
2) CA là tia phân giác của ^MCK