Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phươngg Phương

Tìm GTNN

\(x^2+2y^2+2xy+2x+4y-1.\)

Tìm GTLN

\(-x^2-2x-y^2-8y-10.\)

Phùng Minh Quân
28 tháng 9 2018 lúc 21:05

Đặt \(A=x^2+2y^2+2xy+2x+4y-1\)

\(A=\left(x^2+2xy+y^2\right)+\left(y^2+2y\right)+\left(2x+2y\right)-1\)

\(A=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(y^2+2y+1\right)-3\)

\(A=\left(x+y+1\right)^2+\left(y+1\right)^2-3\ge-3\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy GTNN của \(A\) là \(-3\) khi \(x=0\) và \(y=-1\)

Chúc bạn học tốt ~ 

Phùng Minh Quân
28 tháng 9 2018 lúc 21:09

Đặt \(B=-x^2-2x-y^2-8y-10\)

\(-B=\left(x^2+2x+1\right)+\left(y^2+8y+16\right)-7\)

\(-B=\left(x+1\right)^2+\left(y+4\right)^2-17\ge-17\)

\(B=-\left(x+1\right)^2-\left(y+4\right)^2+17\le17\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}-\left(x+1\right)^2=0\\-\left(y+4\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}}\)

Vậy GTLN của \(B\) là \(17\) khi \(x=-1\) và \(y=-4\)

Chúc bạn học tốt ~ 


Các câu hỏi tương tự
Vũ Đình Đức
Xem chi tiết
son thanh
Xem chi tiết
Hoàng Phạm
Xem chi tiết
Edogawa Conan
Xem chi tiết
Edogawa Conan
Xem chi tiết
Edogawa Conan
Xem chi tiết
Princess Secret
Xem chi tiết
Nguyễn Tùng Lâm
Xem chi tiết
Vũ Thu Hà
Xem chi tiết