\(A=x^4+x^2-6x+9=\left(x^4-2x^2+1\right)+\left(3x^2-6x+3\right)+5\)
\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+5\ge5\)
\(B=\left(x-4\right)\left(x-1\right)\left(x-5\right)\left(x-8\right)+2017\)
\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2017\)
Đặt \(x^2-9x+8=a\)
\(\Rightarrow B=a\left(a+12\right)+2017=a^2+12a+36+1981\)
\(=\left(a+36\right)^2+1981\ge1981\)