Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phúc Hà Anh

Tìm GTNN và GTLN của biểu thức P=(2x+1)/(x^2+2)

Lê Song Phương
12 tháng 5 2023 lúc 22:58

Nháp:

\(P=\dfrac{2x+1}{x^2+2}\) \(\Leftrightarrow P\left(x^2+2\right)=2x+1\) \(\Leftrightarrow Px^2-2x+2P-1=0\) (*)

*Cần chú ý: Với bất kì đa thức bậc hai \(f\left(x\right)=ax^2+bx+c\) nào, muốn \(f\left(x\right)\) có nghiệm thì \(b^2-4ac\ge0\) (Mình không chứng minh ở đây nhé, bạn chỉ cần nhớ để nháp là đủ rồi.)

Do đó để (*) có nghiệm thì \(\left(-2\right)^2-4P\left(2P+1\right)\ge0\) \(\Leftrightarrow4-8P^2+4P\ge0\) \(\Leftrightarrow\left(2P+1\right)\left(1-P\right)\ge0\) \(\Leftrightarrow\dfrac{-1}{2}\le P\le1\)

\(P=-\dfrac{1}{2}\Leftrightarrow x=-2\)\(P=1\Leftrightarrow x=1\).

 Ý tưởng:

  Từ thông tin ở phần nháp, ta sẽ đưa tử của phân thức P về dạng chứa \(\left(x+2\right)^2\) và \(-\left(x-1\right)^2\) vì P đạt min tại \(x=-2\) và max tại \(x=1\), rồi tìm cách biến đổi các số hạng bên ngoài để ra dạng \(kA^2+c\) (\(k,c\) là các hằng số)

 Trình bày:

\(P=\dfrac{-x^2+2x-1+x^2+2}{x^2+2}=\dfrac{-\left(x-1\right)^2}{x^2+2}+1\)

Dễ thấy \(-\left(x-1\right)^2\le0\)\(x^2+2>0\) nên \(\dfrac{-\left(x-1\right)^2}{x^2+2}\le0\) \(\Leftrightarrow P\le1\).

ĐTXR \(\Leftrightarrow x=1\)

Mặt khác, \(P=\dfrac{\dfrac{x^2}{2}+2x+2-\dfrac{x^2}{2}-1}{x^2+2}\)\(=\dfrac{\dfrac{1}{2}\left(x+2\right)^2-\dfrac{1}{2}\left(x^2+2\right)}{x^2+2}\) \(=\dfrac{\left(x+2\right)^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\). Do \(\dfrac{\left(x+2\right)^2}{x^2+2}\ge0\) \(\Leftrightarrow P\ge-\dfrac{1}{2}\). ĐTXR \(\Leftrightarrow x=-2\).

 Vậy GTNN, GTLN của P lần lượt là \(-\dfrac{1}{2};1\), lần lượt xảy ra khi \(x=-2;x=1\) 

Akai Haruma
13 tháng 5 2023 lúc 1:37

Lời giải:

$P=\frac{2x+1}{x^2+2}$

$\Rightarrow P(x^2+2)=2x+1$

$\Rightarrow Px^2-2x+(2P-1)=0(*)$

Vì $P$ tồn tại nên PT $(*)$ có nghiệm.

$\Rightarrow \Delta'=1-P(2P-1)\geq 0$

$\Leftrightarrow 2P^2-P-1\leq 0$

$\Leftrightarrow (P-1)(2P+1)\leq 0$

$\Leftrightarrow \frac{-1}{2}\leq P\leq 1$ 

Vậy $P_{\min}=\frac{-1}{2}$ và $P_{\max}=1$


Các câu hỏi tương tự
Đinh Đức Thành
Xem chi tiết
Nguyễn Võ Thảo Vy
Xem chi tiết
Nguyễn Tấn Phát
Xem chi tiết
Hồ Thị Giang
Xem chi tiết
8/11-22-Đặng Bảo Ngọc
Xem chi tiết
marie
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Trọng Lễ
Xem chi tiết
Hà Nhi Vũ
Xem chi tiết